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NUMERICAL CALCULATION OF LAMINAR COMPRESSIBLE BOUNDARY LAYERS

IN UNSTEADY FLOW

Jean Piquet( 1 )

ABSTRACT. Calculations of some velocity and temperature
boundary layers on a flat plate, especially behind a shock,
have been carried out. Such boundary layers have the follow-
ing structure: two quasi-stationary flows, corresponding to
known analytical solutions expressed in terms of similarity
variables, merge in an interaction region. The governing
equations in this region are singular-parabolic and admit
boundary conditions generally associated with elliptic equa-
tions. These equations are solved successfully by a difference
scheme converging in a suitable way.

1. INTRODUCTION /5*

This paper discusses certain velocity and temperature boundary layers on a

flat plate. A similarity hypothesis takes the place of knowledge of an initial

condition at x = O. Three problems are treated in this way, after being formulated

in Crocco's system of variables and functions. Problem A concerns an impulsively

started flat plate in incompressible flow; problem B, the compressible boundary /6

layer induced by shock; problem C, the shock tube.

(1)ONERA, 29, avenue de la Division-Leclerc, 92-Chatillon-sous-Bagneux, France.

Numbers in the margin indicate pagination in the original foreign text.
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The boundary layer is composed of three regions, in each of which a system of

partial differential equations must be solved. Outside one region, the interaction

zone, the equations governing the phenomena reduce, after analytic transformations

which allow the separation of variables, to simple ordinary differential equations,

treated numerically by an implicit scheme after they are made unsteady.

In the interaction zone, the equations are singular and parabolic, and have

elliptic boundary conditions which involve solutions previously calculated in the

other regions. After making them unsteady, use of an explicit unconditionally

stable scheme allows termination of the numerical solution of the problems

treated.

2. GENERAL EQUATIONS

Before any analysis, the equations are written in an appropriate dimensionless

form. The reference values, noted below with an index O' are in general experimen-

tal conditions of the study. L0 is a characteristic length of the body studied;

QO' a reference velocity which measures, in a boundary-layer problem, the magnitude

of the velocity U at the edge of the boundary layer. In addition, the reference

temperature and pressure are not independent, and are given by the expressions

To= Q
°

and pO=pQo (1)

where the specific heats at constant pressure and at constant volume (c and c,
- ~-p v

respectively) are assumed constant. The dimensionless quantities are obtained

from the dimensioned quantities (overlined) by

Y=Y' /-oto to o = o

'U, U i, o, (2)t
U= Qoo V=p ,Ouo (2)

CP P= (z% -==,,) X
cp - C, pod' Qa -'

where MO, p0, to=LoQo-/repr e s e n t viscosity, density, and reference time, respectively.

The Reynolds number of the flow, Re= P°Q°L°, does not appear in the equations,/7

which in the unsteady laminarcompressible case take thelfollowing form}
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p(U,I+ UU,r+ vU, j.) =-P,-+- (MUy),y,

P,T+ UP,x+ vp,=-VP,-p r- u -- p(u,-V) (3y),)

pcp(T,,-+ uT,x-+ vT,) =p,-+- upx-i+ (cpT ,)'1 +, u,2).

It is necessary to add the two thermodynamic laws:

IP = pT, (4)

the boundary conditions:

y=o, T=T,(x, t); u=o; v=-v(x, t), (5)
y=, T0 = TT(x, t); u = U(x, t)

and the initial conditions:

X = x°, et = u (t' y); T = To(t y), (6)
t = to, U=uo(x, y); T = To(x, y)

for the problem to be properly stated.

The symbol u indicates the partial derivative of the function u with respect
,t

to the variable t. The Prandtl number Pr will be assumed constant, as will the

coefficients X and w which appear in the viscosity law.

In addition, the functions T
w
, Te, v (velocity of blowing at the wall),

u,, u0 , T1
I
and TO are assumed to be known, as well as r (equal to 1 for a plane

problem, or a function of x for an axisymmetric problem) and p(x,t) which, in any

boundary-layer problem, are given. In particular:

-- P,'= pc(U,t-+- UU,t),

p, t = Pecp (Tc, + UTe,,) -- U (U, tq- UU,,), 

where the quantities with the index e represent given values outside the boundary

layer.

In general, knowledge of the exterior flow U(t,x) is a difficult problem in

itself. This is why a first approach to the compressible problem consists of

limiting oneself to the case of flow over a flat plate: /8

p,.= o; P,t= pe p(Te,t+ UT,,,) x2) (8)

(2)The geometry of the problem requires, moreover, that T = O almost everywhere,
e,x

contact discontinuities being tolerated in the exterior flow.
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The numerical solution of various problems belonging to the compressible case can

thus be carried out - in particular, the coupling of velocity and temperature,

and the effect of the Prandtl number.

3. FORMULATION OF THE PROBLEM

The group of equations (3) through (7) is treated after the Crocco transforma-

tion, assuming that (8) holds. Choice of variables t, x, '= jl and of unknown

functions T, o= ,uilleads to

| . o 1--{',?,+ [(P,),+ 'r(pL) ] = o, (9)

)2T,, r_ rTT+D+ 2 + T,-1 1- Pr=o,
PP \Cp PNU /=o

where D=
PCp 

System (9) has the following boundary conditions:

{ ,r,=pv, and T = T,, at r=, o,(10)
?=° Wand T=T T| at ' l

Taking into account (4), the problem is properly stated when c(x = xO),

T(x = x0 ), %(t = t0 ), T(t = t0 ) are specified. Unfortunately, the velocity pro-

files at x = xO, for example, are unknown for the flat plate; therefore, the method

used in reference [1] is inapplicable to the present case.

This difficulty can be avoided by noting that system (9) remains invariaat

under the transformation

t - >/t; x -- kx.'; -q - ';

o T+T; pp; p. (11)
o,--> ~'2-; T-+T; pN1-+ pFu; l>-+p.

If one limits oneself to the case v = O, T and Tw constant, the boundary condi-

tions (10) are also invariant.

Then, taking= =tand n as independent variables, relation (11) shows that the

unknown functions have the forms

(12)

( (tx, , ) T = T( , r,); v(t, x,) ( )
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which leads to the system of equations

' i(-r - )(I, + + -- q- -- (r,( - ) [PA], = o; (13a)
P11 2 PI

(1) 2 T, r IT ~~~~~~(13b)
I, 

+p (- )Te, - -r + =;

-a [V-(q -- c ) v] O V (13c)

=?,- (u T-(-) [?,pr('I'T,7,),7`q -ECp( -'I) =°0tiPu i" i" ¢,(IPi- Te J

It should be noted that the choice of -=' land n as independent variables, which is

strictly equivalent, leads to the form

T T(V (t , , W ' (14)p(LT= r (, . ); , T = T(W( )l)1

and to the equations

.172 -('q- ) - + - ('r-- t) [I], ''= o,?,U ~ ~ ~ ~ ~2q" 7`, ,`

I__ TT_ - 0,
(l-r')T+p Pr (15)

[W - - ) W. r,

~~~~~~'IL.~ ~E=o.
pu -- ('q~) [p--u-r(~FT,7`,),r,qP (I1T cp (i -

In the following, we shall concern ourselves with system (13), having established

once and for all that the course described is followed faithfully in the treatment

of system (15). The nature of the problem will allow a choice between the func-

tions it and T (though related by 4q=q t )\, and as a consequence, between systems

(13) and (15). To equations (13a) and (13b), it is necessary to add the boundary

conditions

Balk,,= O and T = T,,, t , =0, _ (16)

=o | and T = Te -'t 1 ).

Note - When the temperature is not given on the wall, one assumes that the

heat transfer per unit area per unit time, qw, is known:

TV cLcp T~r 1~ CPO T.TI i,·(17)
= Pr ' _=--o Pr T ().

Thus the boundary condition at n = 0 relates to T,n\and not to T. It must be

pointed out that qw must have a particular form: invariance under transformation /10

(11) assumes

5

/9



q, " in case (12)

t�.,Q"' in case (14),

The quantity Qw is a given constant.

4. PHYSICAL PROBLEMS DISCUSSED

4.1 Boundary Layers on a Semi-Infinite Flat Plate: Problems A and B

The leading edge of a semi-infinite flat plate is the origin of the (x,y)

coordinate system, and the plate lies along the positive x axis (axes fixed to the

plate). In this case, the characteristic length is the abscissa of the point at

which the velocity profile is studied, so that x = 1, and consequently = t-'land

Problem A - The plate is impulsively started at time t = 0, and carried from

velocity U = 0 to velocity U = 1. When the conditions on 5 are defined, equations

(13a) and (13b), together with boundary conditions (16),lpermit solution of the

problem. The fluid is, moreover, assumed to be incompressible: i.e., pp = 1 (this

problem was not considered in [1]). The validity of the scheme could thus be

tested for the simplest case, corresponding to equations (13a) and (13b) decoupled.

The results obtained are in good agreement with those of Hall [2] and of Lam and

Crocco [3] (see Figure 1).

a Hall [2] /
a Lam and Crocco [3]

- 20 x 50 net present metho
0,5s _o 10 x 20 netJ present meth

0,4

__~ __/_ _lasius solution

0,ayleigh solution

o0,5 1 g
Figure 1. Problem A. Wall riction =, (L 0)as a function of = x/t.
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Problem B - A plane shock moves over a semi-infinite flat plate and induces a

boundary layer between the shock and the leading edge of the plate. This problem,

which includes Problem A as a special case, has been treated for any Prandtl numbers

or viscosity laws. The results given by Lam and Crocco [3] correspond to decoupled

temperature and velocity boundary layers, and the numerical method they use diverges.

4.2. Shock-Tube Problem: Problem C

At t < 0, two chambers at different pressures are separated by a diaphragm

located at x = O. The two chambers are at the temperature T of their wall. Rupture
w

of the diaphragm causes formation of a shock wave which propagates in the low- /11

pressure chamber in the negative x direction. In principle, the shock must remain

weak so that the "thickness" of the expansion front will remain small. In the con-

trary case, the solution due to Mirels which is used for E < 0 is not strictly valid.

In this problem it is the Y function which is used (the D function is not defined

for i < 0), and so system (15)iis used. Reference time is counted from diaphragm

rupture: t = 1. The characteristic length is calculated for Lo = Qoto, where QO is

the fluid velocity behind the shock, outside the boundary layer (i.e., that of the

contact discontinuity at 1 = 1).

The results described agree with those of Mirels [4], [5], Bromberg [6], and

Berstader and Allport [7] in the region i > 1, with those of Mirels [5] in the

region E < 0, and agree with those obtained by Ban [8] and Ban and Kuerti [9] in

the interaction zone O < E < 1. These last authors were limited to the case of

weak shock, and linearized system (15) with respect to the inverse of the shock

intensity A. (It is expedient to define the intensity of a shock as the ratio of

the shock velocity U to the fluid velocity behind the shock outside the boundary

layer.)

5. PLAN AND GIVEN QUANTITIES OF THE STUDY

5.1 Type of Equations Treated

A simple model of the equations obtained for the problems considered appears

to be:

t),,,.-- r ( -- C) , = o, Fo. X (19)
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For i > 1, equation (19) evolves in the direction of decreasing C.

For O < C < 1, the direction of the evolution of the phenomena changes its direc-j

itionf when the line n = C is crossed. It is thus clearly seen that the study must

be conducted as follows:

1. Determination of the unknown function ~ (or Y) and T in the regions 5 = O

(or C < O) and C > 1, where the perturbations propagate in a single direction;

2. Study of the region 0 < E < 1, the interaction zone, for which the pertur-

bations propagate in the directions of increasing C and decreasing C at the same

time, which requires consideration of 0 (or ' ) and T at C = 0 and C = 1 as boundary

conditions.

Note - Solution of this problem (similar in some ways to the separation prob-

lem) is possible only because the singular line n = C is known. Only the Crocco

transformation, which permits linearization of the convective terms, has this

advantage. In the physical plane, the singular line y(x,t) corresponding to n =

is known only when u is given - i.e., when the problem has been solved.

5.2. External Flow

This is chalracterized by data on U and Te

Problem A:

U = 1; 0 = O at n = 1. (20)

Problem B - Besides relations (20), it is necessary to determine T , which is

obtained simply from T by the Rankine-Hugoniot relation. The physical data of the
w

problem are, besides the wall temperature of the tube Tw, the shock velocity or its

intensity A.

Problem C - The ratio of pressures in each chamber before rupture of the

diaphragm and the temperature of the chambers, together with the shock-tube rela-

tionships, allow successive determination of:

a. the pressure at the contact discontinuity;

b. the velocity QO of the contact discontinuity;
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c. the reference temperature TO;

d. the velocity U and the intensity A of the shock;

e. the velocity c and the intensity B of the expansion front;

f. the temperature TeO behind the contact discontinuity;

g. the temperature Tel immediately behind the shock.

Temperature T (e) is thus established, but has a discontinuity at C = 1. The

point C = n = 1 is an isolated singularity since ~ (5 = 1) and T(E = 1) are contin-

uous in the boundary layer. More precisely,

limr T(T, ' = I)= Teo< lim T( =I, r0 = T,. (21)

The difference Tel= Teo\becomes larger as the shock is stronger.

5.3. Table of Chosen Values

Problem B - References: QO = 36.8 m/s; T
o = 47150 K

A =9,95, T,,,T=62,I8, T,=64,8
9
,

x = 2,.36(2 (), := 0,75, Pr = o,725.

Problem C - 1. Weak shock

References: QO = 36.8 m/s; To = 47150 K

A= 9,95, B= 9 ,33, T, G2 ,1 , Teo = Go,S
7,

Te = 64,89 , = 2,32, " = 0,7, Pr = 0,725,1

2. Strong shock

References: QO = 567.3 m/s; To = 1121.4°K

A = 1,452, B = o,6o5, T,,,= o,26i, Tc0 =o,117,

Tel = o,533, = 1,547, W = o,75, Pr = o,725,

6. SOLUTION OUTSIDE THE INTERACTION ZONE

6.1 Region E > 1

This region corresponds to the time interval during which the effect of the

leading edge does not make itself felt. Everything in Problems A and B occurs as

if the plate were doubly infinite.

(3)The quantity x=/ = -+- -(where T.=-- lzxs6 o, the Sutherland temperature of the

gas). is the proportionality constant in the Chapman-Rubesin law, and is calculated
by Sutherland's formula even if the Chapman-Rubesin law (w = 1) is abandoned.
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In Problem A, the solution is Rayleigh's solution YR (11):

I
Wl,rlr +- - = 0,

2

Pr Pr GP

Here, 0 (5 = 1, n) = '
R

(n).

Problems B and C have a separated-variables solution studied by Mirels [10]:

IF( , Y) = A - l.M(); T(n, Y) = Tm (). (23)

The functions TM and TM satisfy( 4 )

2'FM~Vbg,~~-~- A =0,(24)

Pr ) + CP- .

After solution of system (30), one sets /14

,I ,'I'( )= = ), (25)
(T( = , 7,) = TM().

6.2. Region E < 0.

For problems A and B, the equations are time-independent, since - 0 corres-

ponds to t = . The solution is that of Blasius:

2 (26)

ITPr - p I'r / = 0. o
Pr CP

In problem C, the equations do depend on t in the region - B < < 0. According

to Mirels [5] and Cohen [10], there is again separation of variables:

qF(E, W ) = B // '(); T(E, TB) = Tc(i) (27)

which leads to solving

| WrCIc.- 1(s B) = 0, (28)

' Pr'1, + c + rII T,, (c " Pr ) = 0.
Pr 4 e p

4 System (24) reduces to system (22) when A = and pp = 1.

10



The solution having been reached, we set

(~=o) =(u(0) ) or ( = o) = 1 c), (29)

T(E= o= Tu(() or T(E=o)= Tc(').

6.3. Method of Solution

All the equations considered are of the type

ff, + p h('I) = o;(30a)

Pr, af'g" ( - Pr) +
-

=°, (30b)

with the boundary conditions

f'='O, g=g, |at =o,
f=o) g=gc at =x (31)

and the equation of state pM==Ce(g. Furthermore, the quantities h(Q), ge,, gp,,

are given for the problem.

It may be noted immediately that a first integral of the energy is formulated

in an obvious manner when Pr = 1, for any viscosity law p, =C(gf.

Two integrations lead to Crocco's first integral

=-cp (·n~iisz--s~)nts.·j (32)g=Zp (I -- T) + (g-- g,) -ro + u'-. /(32)
CpI

If Pr = 1, equations (30la) and (30b) are decoupled. The temperature is first

calculated by equation (32); this gives PU =C(g)/, and then equation (30a) is solved.

If the quantity pp is constant, equations (30a) and (30b) are again decoupled, but

it is the friction coefficient f which is calculated first.

Finally, if Pr # 1, and if the product pp is effectively a function of g, there

is no decoupling. One then iterates in the following manner: equation (32) gives

a first series of values for the temperature g (qn); the knowledge of the product pp

which results from this makes it possible to deduce a first iteration for the fric-

tion f. It is then possible to calculate a new value of the temperature g, and so

on. The method converges rapidly, and it appears beneficial to over-relax strongly

the iterations on f carried out after the system is made unsteady, in order to

implement the calculation (Figure 4). The numerical treatment of each differential

equation is performed at each iteration by a classical factorization method, on

the basis of an implicit scheme.
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7. TREATMENT OF THE INTERACTION ZONE

The following system is to be solved:

| pa 7 -_ ( --- ) (I),, + +4(. ' ) (p). = o, 

(1)2 / I~~-Pi,~ ~(33)
PI, n -(? -) T+ _ _ + -Pr ) 

System (39) is first made unsteady by adding derivatives with respect to an artici-

cial time T to the second term. These terms are respectively ,r\afidT,rj. The limits

of 0 and T are then investigated for T + x . The calculation is carried out after

discrete formulation of the equations obtained, according to a scheme which is

explicit and unconditionally stable. If the indices for discrete formulation with

respect to T, 5, and n are respectively n, k, and p, and if the steps are At, A,, A | ,

the partial derivative$ are approximated as follows:

(F, ,)O1 -k,p+i k,p

T(|' () T(C ) (34)
j " ; 1'+ k',p--

(T,"4)*= -- 2f'

/

(4, _ -- ' \a: \(35)

'k ' ,- TN", ,
(T )(n, ) k.= /, ,

' (p l k,p -k,p-l

(Tnr,)(n) = T,.+_ o ,,+,, , ( 36)

The off-centered scheme for ¢D (34) allows attenuation of the effect of the singu-

larity at n = 1. The other centered schemes (34) and (35) give good accuracy.

Finally, the discrete formulation (36) makes an explicit, unconditionally linearly

stable scheme possible. It represents a classical harmonic analysis. If the

condition (,-- = cbnstant is satisfied, consistency with equations (33) is assured

for - oo; -4,= T,= o.

System (34) has been solved in this way for very dense nets: 25 points for

< 1 < 1, and 50 points for 0< < < 1.

Solution is performed as for an elliptic system: i.e., by using the condi-

tions at 5 = 0 and 5 = 1 previously determined in paragraph 6, together with the

boundary conditions at n = 0 and n = 1. Iteration is performed based on

12



TM,- Tp+ 2 [ TRp-Tup].

These values for the functions 1(b,'\and T(' 'are obtained by writing the continuity

of the functions 0 and T at C = 0 and at C = 1, the continuity of the derivative g

at 1 = 1, and its zero value at C = 0. When one iteration (n)", TV"', (pr) is known, a
(n+l)new temperature T is calculated, from which we have

(Pi)*= X[T(n+')] (38)

then a new friction value (*. Then one chooses

V-1) V .~·,(I-.)u~ i·, 1 (39)

and so on.

A test of the type /17

Sup 4i,,, l j< ,/ where = o[o-]
/

(40)

tells whether it is legitimate to stop the calculation. It has seemed necessary

to make a slight under-relaxation for nets of large dimensions: a = 0.95. This

under-relaxation assures a regular decrease in the difference.

8. NUMERICAL RESULTS FOR PROBLEM A

1. It is clearly seen that the velocity profiles are sensitive to the fineness

of the net chosen within the thickness of the boundary layer. Table I shows dif-

ferent values of the wallj friction 't for the Rayleigh solutions at 5 = 1, and the

Blasius solutions at 5 = 0.

TABLE I

exact/
aN 0,05. o0,02. vaiIue/

tp(E = o) .......... 0,3296 o,33i3 0,3319
p(E = I) .......... 0,5480 0,5579 0,5640

This small difference is due to the presence of a singularity of the form

at the edge of the boundary layer. Its effect is very moderate, and justifies

taking ( = 0 as the only condition at n = 1 (even though the nature of a must re-

quire that D = _- ).

13



O

Figure 2 - Problem A.

Velocity profiles in the region E > 1 and at i = 0.

2. The solid line of Figure 1 shows the wall friction T as a function of the ratio

= within the interaction zone (for E > 1, T varies as V). There is a small

but nevertheless visible difference between two nets of different fineness. The

results closest to those of Hall [2] and Lam and Crocco [3] correspond to the

finest net.

3. Figures 2 and 3 show the variation of the velocity profiles with time at a

given abscissa of the flat plate. These profiles agree well with those of Hall

[2] and of Cheng and Elliott [11], except at the edge of the boundary layer, the

slight difference being due to the fact that n is poorly represented at n = 1. /19

9. NUMERICAL RESULTS IN THE CASE OF COUPLING

9.1. Iteration Conditions

When, thanks to case A, it has been demonstrated that the scheme converges in

a satisfactory manner for a single equation, it is necessary to determine the relax-

ation coefficients which assure the most rapid convergence of the coupled system.

Figure 4 reveals that for Problem B (with a 10 x 20 net in the interaction

14



3

t= 1,67
t=1,5

I-

u/U
0 I>

o,5 1

Figure 3 - Problem A

Velocity profiles in the interaction zone 0 < i < 1.

zone), in the region >, 1 and at C = O- where a completely implicit scheme is /21

used - it is advantageous to carry out a strong over-relaxation, which results

in a large reduction in the number of iterations. On the other hand, if the relax-

ation factor is greater than 1 in the interaction zone, where the scheme is expli-

cit, it easily destroys the convergence (for a 10 x 20 net, from a = 1.1} with the

result that it appears desirable to under-relax slightly, particularly for finer

nets.

9.2. RESULTS FOR PROBLEM B

Figure 5 shows the variation of the velocity profiles with E for a weak shock.

No new phenomenon appears in the incompressible case, except that obtaining the

steady state requires a greater time delay (t = 5 instead of t = 3.5 in the

15



Figure 4 - Problem B

Influence of relaxation factor on
convergence of the numerical
schemes.

I

Figure 5 - Problem B

Behavioi of velocity profiles.

- Strong shoc1
-- Weak shockl-
*lBan and-Kuerti [911
.,Ban [8]kI .1.
QMurdock l'2]1 E

_ _ -

Figure 6 - Problems B and C

Wall friction in the interaction zone.
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4
4 

3

=0,25-- .
10,15

//, /

0 0,5

Figure 7 - Problem C

Behavior of velocity profiles in the interaction zone.

incompressible case). It is also clearly seen that the steady state is more slowly

established as the shock is stronger.

The variation in wall friction T (Figure 6) has been more closely studied /22

in the interaction zone, and compared with various results for the shock-tube

problem. The difference between the conditions at C = 0 for Problems B and C is

felt up to E = 0.55, indicating that the effect of upstream conditions is felt only

after a certain time interval.

9.3. Problem C, the Shock Tube.

Two cases have been considered. The weak shock corresponds to a low exterior

fluid velocity, to a small temperature discontinuity at E = 1, and thus to moderate

thermal perturbations in the boundary layer. The strong shock corresponds to a /23

much greater exterior fluid velocity, and to large temperature and velocity

17



2

Figure 8 - Problem C

Behavior of the temperature profiles in a shock tube (strong shock).

2

0 >'
2870 293*2' 3000 3060

Figure 9 - Problem C

Behavior of temperature profiles in a shock tube (weak shock).
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Figure 10 - Problem C

Isotherms in the interaction zone (strong shock, 20 x 40 net).

1

28802

,5 C 29008
298"6

29607

28401
0 o, 1 

Figure 11 -- Problem C

Isotherms in the interaction zone (weak shock, 20 x 40 net).
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perturbations in the boundary layer. It is known, for example, that in this case,

the thickness of the expansion front is far from negligible, so that a solution of

a similar type, still used for C < 0, is not physically justified. Nevertheless,

this has been retained in order to compare the present results with those of various

authors, when possible, and also the better to concentrate attention on the inter-

action zone.

Figure 6 allows comparison of the values obtained by Murdock [12] and Ban [8]

for wall friction with those obtained by the present method , for a strong shock

with w = 1 and Pr = 1. The wall friction seems under-estimated with respect to

that calculated by taking into account a more real physical situation (w = 0.75

and Pr = 0.725).

For a weak shock (only the case for w = 0.75 and Pr = 0.725 is represented),

the situation is reversed, and the present data are clearly far removed from the /25

results of Ban and Kuerti [9], especially for = 1.

Figure 7 shows that for a weak shock, the velocity profiles in the interaction

zone are virtually superposed. This result is in good agreement with that of Ban

and Kuerti [9]. In contrast, a crossing of the curves occurs for the strong shock;

the function u/U increases out to a value of C of about 0.55, particularly near the

plate (where inflection points seem to appear), then decreases to C = 1.

Figures 8 and 9 give the behavior of the temperature profiles in a shock tube,

for a strong shock and for a weak one, respectively. The coordinate E represents

the abscissa x where the temperature profile at time t = 1 is studied. Figures 10

and 11 show the temperature isotherms in the E - n plane, for strong and weak

shocks, respectively. The line of extension of the contact discontinuity in the /26

boundary layer is seen to be displaced toward smaller values of E as the intensity

of the shock increases.

(5)In the following discussion, the accuracy e required in the scheme is 0.5x10- 4

for a strong shock, and 0.5x10
- 5

for a weak one. Finer requirements would entail
prohibitive machine times.
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10. CONCLUSION

It is evident from these studies that it is possible:

1. To deal with the problem of boundary layers on a flat plate, sefJi-infinite

or not, induced by shock. This can be done in a more systematic and more general

manner than by methods of the type of Lam and Crocco [3], Ban and Kuerti [9], or

Murdock [12].

The method described here uses, as do the others, classical similarity proper-

ties and solutions of ordinary equations (Blasius, Rayleigh, and Mirels types). It

justifies application of the Crocco transformation, despite the presence of a

singularity at n = 1 resulting from the transformation from an infinite domain to

a bounded one, and despite the possible contact discontinuity appearing at C = q = 1

in the shock-tube problem. One of the characteristics of the method is the treat-

ment of the interaction zone with the aid of an explicit, unconditionally stable

numerical schemaL

2. To generalize the application of numerical treatment of equations with a

pressure gradient, subject to a Crocco transformation, for any viscosity law and

arbitrary Prandtl number. The obstacle then lies only in lack of knowledge of the

exterior flow, and not in numerical problems resulting from ~ - T coupling.
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